Die Ergebnisse der Forschungs- und Entwicklungsarbeiten der Diaspective Vision GmbH werden regelmäßig in der Fachliteratur veröffentlicht.


Holmer, Amadeus, Kämmerer, Peer-Wolfgang et al. (2017). The ability of hyperspectral imaging to detect perfusion disorders. Posterpräsentation auf der European Conference on Biomedical Optics – ECBO.
» Poster aufrufen


Holmer, Amadeus, Kämmerer, Peer-Wolfgang et al. (2016). Bildgebende chemische Analyse und die Anwendung in der medizinischen Perfusions-Forschung. Tagungsband zur Automed 2016.
» Artikel aufrufen

Holmer, Amadeus, Tetschke, Forian et al. (2016). Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiological Measurement, 37(11), 2064. » Artikel aufrufen

Tetschke, Florian, Markgraf, Wenke et al. (2016). Hyperspectral Imaging for monitoring oxygen saturation levels during normothermic kidney perfusion. J. Sens. Sens. Sys., 5, 313-318.
» Artikel aufrufen

weitere Veröffentlichungen sind geplant und in Arbeit


Marotz, J., Siafliakis, A., Holmer, A., Kulcke, A., & Siemers, F. (2015). First results of a new hyperspectral camera system for chemical based wound analysis. Wound Medicine, 10, 17-22.
» Artikel aufrufen

Weiterführende Literatur in der hyperspektralen Bildgebung:

[1] Sowa, M. G., Kuo, W. C., Ko, A. C., & Armstrong, D. G. (2016). Review of near-infrared methods for wound assessment. Journal of biomedical optics, 21 (9), 091304-091304.

[2] Perng, C. K. (2013). Recent advances in postoperative free microvascular flap monitoring. Formosan Journal of Surgery, 46 (5), 145-148.

[3] Myers, D., McGraw, M., George, M., Mulier, K., & Beilman, G. (2009). Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Critical Care, 13 (5), 1.

[4] Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review. Journal of biomedical optics, 19 (1), 010901-010901.

[5] Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 38 (15), 2543.

[6] Keller, Alex. „A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements.“ Annals of plastic surgery 62.5 (2009): 538-543.

[7] Yafi, Amr, et al. „Postoperative quantitative assessment of reconstructive tissue status in cutaneous flap model using spatial frequency domain imaging.“ Plastic and reconstructive surgery 127.1 (2011): 117.